Factor x^3+7x^2-36
Factor using the rational roots test.
Click for detailed explanation...
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Find every combination of . These are the possible roots of the polynomial function.
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Click for detailed explanation...
Substitute into the polynomial.
Raise to the power of .
Raise to the power of .
Multiply by .
Add and .
Subtract from .
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Divide by .
Click for detailed explanation...
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | + | - |
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | - |
Multiply the new quotient term by the divisor.
- | + | + | - | ||||||||
+ | - |
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | - | ||||||||
- | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
Pull the next terms from the original dividend down into the current dividend.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Multiply the new quotient term by the divisor.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Pull the next terms from the original dividend down into the current dividend.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Multiply the new quotient term by the divisor.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Since the remander is , the final answer is the quotient.
Write as a set of factors.
Factor using the AC method.
Click for detailed explanation...
Factor using the AC method.
Click for detailed explanation...
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
Remove unnecessary parentheses.
- Evaluate pi/4-(3pi)/4
- Convert to Logarithmic Form b=e^(c+7)
- Simplify 8a^2(-a^7+7a-7)
- Find the Range 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
- Find the Determinant [[-2,3,8],[6,7,-1],[-4,5,9]]
- Find f(g(x)) f(x) = square root of x+4 , g(x)=8x^2-8
- Write in y=mx+b Form y-6=-8(x-1)
- Transpose [[22,3,35,21],[56,52,32,125],[125,22,26,32]]
- Convert to Exponential Form log base b of 4x-1=c
- Simplify/Condense 8 log of 7*7^9