# Factor x^3+7x^2-36

Factor using the rational roots test.

Click for detailed explanation...

If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.

Find every combination of . These are the possible roots of the polynomial function.

Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.

Click for detailed explanation...

Substitute into the polynomial.

Raise to the power of .

Raise to the power of .

Multiply by .

Add and .

Subtract from .

Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.

Divide by .

Click for detailed explanation...

Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

- | + | + | - |

Divide the highest order term in the dividend by the highest order term in divisor .

- | + | + | - |

Multiply the new quotient term by the divisor.

- | + | + | - | ||||||||

+ | - |

The expression needs to be subtracted from the dividend, so change all the signs in

- | + | + | - | ||||||||

- | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

- | + | + | - | ||||||||

- | + | ||||||||||

+ |

Pull the next terms from the original dividend down into the current dividend.

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | |||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + |

Multiply the new quotient term by the divisor.

+ | |||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

+ | - |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | |||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

+ | |||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ |

Pull the next terms from the original dividend down into the current dividend.

+ | |||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ | - |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | + | ||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ | - |

Multiply the new quotient term by the divisor.

+ | + | ||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ | - | ||||||||||

+ | - |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | + | ||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ | - | ||||||||||

- | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

+ | + | ||||||||||

- | + | + | - | ||||||||

- | + | ||||||||||

+ | + | ||||||||||

- | + | ||||||||||

+ | - | ||||||||||

- | + | ||||||||||

Since the remander is , the final answer is the quotient.

Write as a set of factors.

Factor using the AC method.

Click for detailed explanation...

Factor using the AC method.

Click for detailed explanation...

Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .

Write the factored form using these integers.

Remove unnecessary parentheses.

- Evaluate pi/4-(3pi)/4
- Convert to Logarithmic Form b=e^(c+7)
- Simplify 8a^2(-a^7+7a-7)
- Find the Range 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
- Find the Determinant [[-2,3,8],[6,7,-1],[-4,5,9]]
- Find f(g(x)) f(x) = square root of x+4 , g(x)=8x^2-8
- Write in y=mx+b Form y-6=-8(x-1)
- Transpose [[22,3,35,21],[56,52,32,125],[125,22,26,32]]
- Convert to Exponential Form log base b of 4x-1=c
- Simplify/Condense 8 log of 7*7^9